Elements for a sociology of data, datafication, and big data

Authors

Download

Abstract

This article analyzes the phenomenon of big data from a sociological perspective, using Social Systems Theory (SST) as its conceptual framework. In the first section, we present the phenomenon of big data and approach it as a discursive construction that articulates a sociotechnical mandate along with promises of objectivity and control. We offer a conceptualization of this phenomenon as a self-description of society and briefly discuss the thesis of its disruptive impact on the social structure. In the second section, we propose an initial conceptual framework for a sociology of data and the social practice of data production and data repurpose, referred to as datafication. Drawing on contributions from critical data studies and SST, we explore four theses: datafication as an autopoietic process, the constitution of data within communication, inclusion/exclusion dynamics in data, and the possible emergence of a functional system.

Keywords:

big data , datafication , social systems theory , functional differentiation , sociology

References

Alaimo, C. y Kallinikos, J. (2024). Data rules: reinventing the market economy. The MIT Press.

Anderson, C. (2008). The end of theory. The data deluge makes the scientific method obsolete. Wired. https://www.wired.com/2008/06/pb-theory/

Andrejevic, M. (2014). The big data divide. International Journal of Communication, 8(1), 1673–1689. https://doi.org/1932–8036/20140005

Baack, S. (2015). Datafication and empowerment: How the open data movement re-articulates notions of democracy, participation, and journalism. Big Data and Society, 2(2), 1–11. https://doi.org/10.1177/2053951715594634

Bates, J., Lin, Y. W., & Goodale, P. (2016). Data journeys: Capturing the socio-material constitution of data objects and flows. Big Data and Society, 3(2), 1–12. https://doi.org/10.1177/2053951716654502

Beaulieu, A., y Leonelli, S. (2022). Data and Society. A Critical Introduction. Sage Publications

Becerra, G. (2021). The promise and the premise: How digital media present big data. First Monday, 26(9). https://doi.org/https://doi.org/10.5210/fm.v26i9.10539

Becerra, G. (2022). Representaciones sociales del big data en la prensa digital argentina. Questión, 3(72). https://doi.org/https//doi.org/10.24215/16696581e726

Becerra, G., Mezzadra, J., & Gambino, B. (2025). Mapeando la datificación: Un análisis bibliométrico de perspectivas y patrones en la comunicación científica. Revista de Ciencias Empresariales y Sociales, 12(9), 1–28. https://publicacionescientificas.uces.edu.ar/index.php/empresarialesysociales/article/view/1878

boyd, D., y Crawford, K. (2012). Critical Questions for Big Data. Information, Communication & Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878

Byung-Chul, H. (2014). Psicopolítica. Neoliberalismo y nuevas técnicas de poder. Herder

Castells, M. (1998). La era de la información: Economía, sociedad y cultura. Alianza Editorial

D’Ignazio, C. y Klein, L. (2020). Data feminism. The MIT Press

Dalton, J. y Thatcher, J. (2014). What does a critical data studies look like , and why do we care? Seven points for a critical approach to ‘big data.’ Society and Space, 1–12. http://societyandspace.org/2014/05/12/what-does-a-critical-data-studies-look-like-and-why-do-we-care-craig-dalton-and-jim-thatcher/

Davenport, T. H. y Patil, D. J. (2012). Data scientist. Harvard Business Review, 90(October 2012), 70–76. http://128.255.244.58/strategic/articles/data_scientist-the_sexiest_job_of_the_21st_century.pdf

Diebold, F. X. (2012). The Origin(s) and development of “ Big Data ”: the phenomenon , the term , and the discipline. Penn Economics Working Paper, 12. https://doi.org/10.2139/ssrn.2202843

Dorschel, R. (2021). Discovering needs for digital capitalism: The hybrid profession of data science. Big Data and Society, 8(2). https://doi.org/10.1177/20539517211040760

Esposito, E. (2022). Artificial communication. How algorithms produce social intelligence. The MIT Press.

Flensburg, S. y Lomborg, S. (2023). Datafication research: Mapping the field for a future agenda. New Media and Society, 25(6), 1451–1469. https://doi.org/10.1177/14614448211046616

Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Iii, H. D., y Crawford, K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86–92. https://doi.org/10.1145/3458723

Gitelman, L. (2013). “Raw Data” Is an Oxymoron. The MIT Press. https://doi.org/10.1080/1369118X.2014.920042

Jemielniak, D. (2020). Thick big data. Doing digital social sciences. Oxford University Press.

Kallinikos, J. (2006). Information out of information: On the self-referential dynamics of information growth. Information Technology and People, 19(1), 98–115. https://doi.org/10.1108/09593840610649989

Kitchin, R. (2014a). Big Data, new epistemologies and paradigm shifts. Big Data & Society, 1(1). http://journals.sagepub.com/doi/10.1177/2053951714528481

Kitchin, R. (2014b). The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. Sage. https://doi.org/10.4135/9781473909472

Kitchin, R. (2014c). The real-time city? Big data and smart urbanism. GeoJournal, 79(1), 1–14. https://doi.org/10.1007/s10708-013-9516-8

Kitchin, R. (2021). Data Lives. How data are made and shape our world. Bristol University Press.

Kitchin, R., & Lauriault, T. P. (2014). Towards critical data studies : Charting and unpacking data assemblages and their work. Geoweb and Big Data, 1–19. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2474112

Kitchin, R., & McArdle, G. (2016). What makes Big Data, Big Data? Exploring the ontological characteristics of 26 datasets. Big Data and Society, 3(1), 1–10. https://doi.org/10.1177/2053951716631130

Leonelli, S. (2015a). The philosohy of data. In L. Floridi (Ed.), The Handbook for the Philosophy of Information. Routledge.

Leonelli, S. (2015b). What Counts as Scientific Data? A Relational Framework. Philosophy of Science, 82(5), 810–821. https://doi.org/10.1086/684083

Leonelli, S. (2020a). Learning from data journeys. In S. Leonelli & N. Tempini (Eds.), Data Journeys in the Sciences (pp. 1–24). https://doi.org/10.1007/978-3-030-37177-7_1

Leonelli, S. (2020b). Scientific Research and Big Data. Stanford Encyclopedia of Philosophy.

Luhmann, N. (1997). La ciencia de la sociedad. Anthropos

Luhmann, N. (1998). Sistemas sociales. Lineamientos para una teoría general. Anthropos

Luhmann, N. (2000). La realidad de los medios de masas. Anthropos

Luhmann, N. (2007). La sociedad de la sociedad. Herder

Lupton, D. (2016). The quantified self. polity Press

Lycett, M. (2013). “Datafication”: Making sense of (big) data in a complex world. European Journal of Information Systems, 22(4), 381–386. https://doi.org/10.1057/ejis.2013.10

Lyytinen, K. y Yoo, Y. (2002). Issues and Challenges in Ubiquitous Computing. Communications of the ACM, 45(12), 3–12. https://doi.org/10.1016/b978-0-12-600955-2.50021-6

Matei, S. A., Jullien, N. y Goggins, S. P. (2017). Big Data Factories. Springer International Publishing. https://doi.org/10.1007/978-3-319-59186-5

Marton, A. (2009). Self-Referential Technology and the Growth of Information: From Techniques to Technology to the Technology of Technology. Soziale Systeme, 15(1), 138–159. https://doi.org/10.1515/sosys-2009-0109

Mayer-Schonberger, V. y Cukier, K. (2013). Big data. A revolution that will transform how we live, work, and think. Eamon Dolan/Houghton Mifflin Harcourt.

Neri, H. y Cordeiro, V. (2025). Reimagining Sociality in the Digital Age: Transcending the Interaction/Society Dichotomy. Systems Research and Behavioral Science, 1–15. https://doi.org/10.1002/sres.3142

Pignuoli Ocampo, S. (2022). Comunicación digital: Definición operativa y aproximación a la participación bajo la forma inclusión / exclusión digital. MAD, 46, 70–83. https://doi.org/10.5354/0719-0527.2022.68542

Overwijk, J. (2025). Cybernetic Capitalism. Fordham University Press

Pentzold, C. y Knorr, C. (2024). When data became big: revisiting the rise of an obsolete keyword. Information Communication and Society, 27(3), 600–617. https://doi.org/10.1080/1369118X.2023.2227673

Portmess, L. y Tower, S. (2015). Data barns, ambient intelligence and cloud computing: the tacit epistemology and linguistic representation of Big Data. Ethics and Information Technology, 17(1), 1–9. https://doi.org/10.1007/s10676-014-9357-2

Qvortrup, L. (2006). Understanding new digital media: Medium theory or complexity theory? European Journal of Communication, 21(3), 345–356. https://doi.org/10.1177/0267323106066639

Rheinberger, H. J. (2011). Infra-experimentality: From traces to data, from data to patterning facts. History of Science, 49(3), 337–348. https://doi.org/10.1177/007327531104900306

Rijmenam, M. van. (2014). Think bigger. American Management Association.

Sadowski, J. (2019). When data is capital: Datafication, accumulation, and extraction. Big Data and Society, 6(1), 1–12. https://doi.org/10.1177/2053951718820549

Taekke, J. (2022). Algorithmic Differentiation of Society – a Luhmann Perspective on the Societal Impact of Digital Media. Journal of Sociocybernetics, 18(1), 2–23. https://papiro.unizar.es/ojs/index.php/rc51-jos/article/view/6225

Taekke, J. (2024). From media evolution to the Anthropocene: Unpacking sociotechnical autopoiesis. Systems Research and Behavioral Science, February 2024, 383–395. https://doi.org/10.1002/sres.3009

Taekke, J. (2025). Sociological Perspectives on AI, Intelligence and Communication. Systems Research and Behavioral Science, 1–11. https://doi.org/10.1002/sres.3123

The Economist (2017). Data is giving riste to a new economy. 6/5/2017. https://www.economist.com/briefing/2017/05/06/data-is-giving-rise-to-a-new-economy

The Guardian. (2018). How Cambridge Analytica turned Facebook “likes” into a lucrative political tool. 17/03/2018. https://www.theguardian.com/technology/2018/mar/17/facebook-cambridge-analytica-kogan-data-algorithm

UNESCO. (2021). Recomendación sobre la Ética de la Inteligencia Artificial. UNESCO https://www.unesco.org/es/legal-affairs/recommendation-ethics-artificial-intelligence

UNESCO. (2024). Guía para el uso de IA generativa en educación e investigación. UNESCO. https://www.unesco.org/es/articles/guia-para-el-uso-de-ia-generativa-en-educacion-e-investigacion

van Dijck, J. (2014). Datafication, dataism and dataveillance: Big data between scientific paradigm and ideology. Surveillance and Society, 12(2), 197–208.