Intelligent decisions in society 4.0

Authors

Download

Abstract

The rise of Artificial Intelligence Algorithms (AIA) and Computational Intelligence Algorithms (CIA) marks contemporary technological evolution, playing a crucial role in building intelligent systems that drive decisions in various domains. Objective: To explore how the integration of AIA and CIA in Society 4.0 reshapes decision-making, highlighting the benefits, ethical challenges, and influence of these algorithms on social and organizational transformation. Methodology: Contextual and critical analysis of the literature on the application of AIA and CIA, focusing on the areas of public, legal, and business management, as well as hyperautomation and its implications. Results: Society 4.0 is characterized by the intensive use of interconnected technologies that enable global automation and optimization. The rapid adoption of algorithms raises questions about transparency, explainability, and social impacts, especially in sensitive legal contexts. AI and CIA are fundamental to digital transformation, promoting advanced analytics and automation of complex tasks in productive sectors and in the formulation of public policies. Conclusion: The implementation of AI and CIA is revolutionizing society by providing tools for more efficient and effective decisions. However, it is crucial to address the ethical challenges to ensure the reliability and impartiality of automated systems.

Keywords:

society 4.0 , artificial intelligence algorithms , computational intelligence algorithms , hyperautomation , digital transformation

References

Amaral, F. (2016). Introdução à ciência de dados: mineração de dados e big data. São Paulo: DTP.

Bostrom, N. (2019). Superinteligência: caminhos, perigos, estratégias. São Paulo: DarkSide Books.

Brown, T. et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 33.

Cazzaniga, M. (2024). Gen-AI: Artificial intelligence and the future of work. Washington, DC: International Monetary Fund.

Chen, H., Chiang, R. H. L., e Storey, V. C. (2012). Business intelligence and analytics: from big data to big impact. MIS Quarterly, 36(4), 1165–1188.

Floridi, L. (2014). The fourth revolution: how the infosphere is reshaping human reality. Oxford: Oxford University Press.

Goodfellow, I., Bengio, Y., e Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.

Grus, J. (2016). Data science do zero: primeiras regras com o Python. Rio de Janeiro: Alta Books.

Haykin, S. (2008). Neural networks and learning machines. 3. ed. Pearson.

LeCun, Y., Bengio, Y., e Hinton, G. (2015). Deep learning. Nature, 521, 436-444.

Lee, K.-F. (2018). AI superpowers: China, Silicon Valley and the new world order. Boston: Houghton Mifflin Harcourt.

Lee, K.-F. (2019). Inteligência artificial: como os robôs estão mudando o mundo, a forma como amamos, nos relacionamos, trabalhamos e vivemos. Rio de Janeiro: Globo Livros.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. Cambridge, MA: MIT Press.

O’Neil, C. (2017). Weapons of math destruction: how big data increases inequality and threatens democracy. New York: Crown Publishing Group.

Pinheiro, Á. F. (2021). Inteligência artificial: fundamentos e aplicabilidades. Recife: Centro de Formação de Servidores e Funcionários Públicos do Estado de Pernambuco – CEFOSPE.

Pinheiro, Á. F. (2022). Automação de processos através da RPA para transformação digital. Brasília: Escola Nacional de Administração Pública – ENAP.

Pinheiro, Á. F., Silveira, D. S., e Lima Neto, F. B. (2022). Use of machine learning for active public debt collection with recommendation for the method of collection via protest. In: Wyld, D. C. et al. (eds.), AIAPP, NLPML, DMA, CRIS, SEC, CoSIT, SIGL – 2022. Computer Science & Information Technology (CS & IT), 99-108.

Pinheiro, Á. F., Santos, W. B., e Lima Neto, F. B. (2023a). Intelligent framework to support technology and business specialists in the public sector. IEEE Access, 11, 15655-15662.

Pinheiro, Á. F., Santos, W. B., e Lima Neto, F. B. (2023b). Use of machine learning to validate an intelligent framework to support decision making in the public sector. Journal of Artificial Intelligence & Cloud Computing, 2(3), 1-13.

Pinheiro, Á. F. (2024). Inteligência artificial. Recife: Escola de Governo de Administração Pública de Pernambuco.

Pinheiro, Á. F. (2025). Inteligência artificial. Recife: Escola de Saúde Pública de Pernambuco.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408.

Rumelhart, D. E., Hinton, G. E., e Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536.

Russell, S., e Norvig, P. (2021). Artificial intelligence: a modern approach. 4. ed. Pearson.

Santos-D’Amorim, K. et al. (2020). Dos dados ao conhecimento: tendências da produção científica sobre Big Data na Ciência da Informação no Brasil. Encontros Bibli, 25, 1–23.

Schwab, K. (2016). A quarta revolução industrial. São Paulo: Edipro.

Sharma, N. (2022). Business Process Automation: The Essential Guide to Business Process Automation Strategies. London: Routledge.

Siegel, E. (2020). Análise preditiva: o poder de predizer quem vai clicar, comprar, mentir ou morrer. 2. ed. Rio de Janeiro: Alta Books.

Surden, H. (2020). Artificial intelligence and law: an overview. Georgia Law Review, 35(3), 1–30.

Vaswani, A. et al. (2017). Attention is all you need. Advances in Neural Information Processing Systems (NeurIPS), 30.

Widrow, B., e Hoff, M. E. (1960). Adaptive switching circuits. Institute of Radio Engineers, WESCON Convention Record.

Witten, I. H., Frank, E., e Hall, M. A. (2016). Data mining: practical machine learning tools and techniques. 4. ed. Morgan Kaufmann.