From the printing press to the algorithm

Authors

Download

Abstract

This article examines how—while maintaining the true/false binary code that distinguishes scientific communications—the self-evaluation of the science system has been reprogrammed through couplings with algorithmic infrastructures. Four dimensions are analyzed: 1. Temporality: the adoption of preprints and continuous editing has turned manuscripts into “living documents”; 2. Visibility: open peer review has deployed new circuits of legitimation; 3. Traceability: versioning, linking to data and code, and monitored retractions ensure an auditable operational memory; and 4. Agency: the incorporation of LLM platforms and AI tools reconfigures roles and flows in discovery, writing, and evaluation. In addition, emerging pathologies (predatory publishers, paper mills, plagiarism, and undeclared use of AI) are integrated as disturbances that affect the system's programs and expectations. The concept of algorithmically mediated self-evaluation is proposed as a heuristic category. It is concluded that self-evaluation persists as an essential function, although its forms have been reconfigured by new socio-technical infrastructures that demand criteria of transparency and accountability in line with the current communication regime.

Keywords:

social systems theory , scientific communication , open peer review , algorithmic traceability , algorithm-mediated self-assessment

References

A Matthews, J., y Volpe, C. R. (2023). Academics’ perceptions of ChatGPT-generated written outputs: A practical application of Turing’s Imitation Game. Australasian Journal of Educational Technology, 39(5), 82-100. https://doi.org/10.14742/ajet.8896

AlAfnan, M. A., y MohdZuki, S. F. (2023). Do Artificial Intelligence Chatbots Have a Writing Style? An Investigation into the Stylistic Features of ChatGPT-4. Journal of Artificial Intelligence and Technology. https://doi.org/10.37965/jait.2023.0267

Amato, L. F. (2023). Diferenciación funcional, del concepto al contexto empírico: Escalas sistémicas, niveles estructurales y sincretismo entre formas de diferenciación social. Revista MAD, 48, 15-38. https://doi.org/10.5354/0719-0527.2023.72133

Aquarius, R., Schoeters, F., Wise, N., Glynn, A., y Cabanac, G. (2025). The existence of stealth corrections in scientific literature—A threat to scientific integrity. Learned Publishing, 38(2), e1660. https://doi.org/10.1002/leap.1660

Barbour, V., Kleinert, S., Wager, E., y Yentis, S. (2009). Guidelines for retracting articles. Committee on Publication Ethics. https://doi.org/10.24318/cope.2019.1.4

Bognár, B. (2013). Luhmann’s Functional Subsystems of Modern Society? The Character of Horizontal and Vertical Relationships. Polish Sociological Review, 182, 137-152. https://www.jstor.org/stable/41969485

Bourdieu, P. (1994). El campo científico (A. Buch, Trad.). Redes: revista de estudios sociales de la ciencia, 1(2), 129-160. http://www.iesct.unq.edu.ar/images/redes/RedesN02/Articulos/Perspectivas/Dossier,%20El%20campo%20cientifico%20Pierre%20Bourdieu.pdf

Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 2053951715622512. https://doi.org/10.1177/2053951715622512

Callon, M., y Latour, B. (1981). Unscrewing the big Leviathan: How actors macro- structure reality and how sociologists help them to do so. En K. K. Cetina y A. V. Cicourel (Eds.), Advances in Social Theory and Methodology: : Towards an Integration of Micro-and Macro-sociologies (pp. 277-303). Routledge. http://www.bruno-latour.fr/sites/default/files/09-LEVIATHAN-GB.pdf

Chaleplioglou, A., y Koulouris, A. (2023). Preprint paper platforms in the academic scholarly communication environment. Journal of Librarianship and Information Science, 55(1), 43-56. https://doi.org/10.1177/09610006211058908

Chan, T. T., Pulverer, B., Rooryck, J., y Review, C. W. G. on R. and R. P. (2025). Recognizing and Rewarding Peer Review of Scholarly Articles, Books, and Funding Proposals: Recommendations by the CoARA Working Group on Recognizing and Rewarding Peer Review. Zenodo. https://zenodo.org/records/15968446

Collins, A., y Alexander, R. (2022). Reproducibility of COVID-19 pre-prints. Scientometrics, 127(8), 4655-4673. https://doi.org/10.1007/s11192-022-04418-2

COPE. (2022, septiembre 15). Principles of Transparency and Best Practice in Scholarly Publishing. COPE: Committee on Publication Ethics. https://publicationethics.org/guidance/guideline/principles-transparency-and-best-practice-scholarly-publishing

Da Fonseca, G. F., Amato, L. F., y De Barros, M. A. L. L. (Eds.). (2023). Contemporary socio-legal studies empirical and global perspectives. Universidade de São Paulo. Faculdade de Direito. https://doi.org/10.11606/9788553062027

Demetis, D. (2023). The Autopoietic Character of Society. Journal of Systems Thinking, 3(1). https://doi.org/10.54120/jost.0000013

Echternacht, T. H. D. S., y Teixeira, J. P. A. (2024). Luhmann’s Systems Theory applied to data protection in the digital age: A multiple case study in technology companies. En Multidisciplinary Research and Practice (1.a ed.). Seven Editora. https://doi.org/10.56238/sevened2024.029-014

Esposito, E. (2017a). Algorithmic memory and the right to be forgotten on the web. Big Data & Society, 4(1), 2053951717703996. https://doi.org/10.1177/2053951717703996

Esposito, E. (2017b). Artificial Communication? The Production of Contingency by Algorithms. Zeitschrift Fur Soziologie, 46(4), 249-265. https://doi.org/10.1515/zfsoz-2017-1014

Esposito, E. (2021). Opacity and Complexity of Learning Black Boxes [Author’s Response]. Constructivist Foundations, 16(3), 377-380. https://constructivist.info/16/3/377

Esposito, E. (2022). Artificial Communication: How Algorithms Produce Social Intelligence. The MIT Press. https://doi.org/10.7551/mitpress/14189.001.0001

Fluri, J., Fornari, F., y Pustulka, E. (2024). On the importance of CI/CD practices for database applications. Journal of Software: Evolution and Process, 36(12), e2720. https://doi.org/10.1002/smr.2720

Forte, M. Á., Ocampo, S. P., Calise, S., Palacios, M., y Zitello, M. (2012). Las TIC como problema de la teoría sociológica. Una aproximación conceptual a la comunicación digitalizada desde la teoría general de sistemas sociales autorreferenciales y autopoiéticos. Revista de la Carrera de Sociología, 2, Article 2; https://web.archive.org/web/20211007045532/https://publicaciones.sociales.uba.ar/index.php/entramadosyperspectivas/article/view/137. https://publicaciones.sociales.uba.ar/index.php/entramadosyperspectivas/article/view/137

Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E. C., Ramesh, S., Luo, Y., y Pearson, A. T. (2023). Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers. Npj Digital Medicine, 6(1), 75. https://doi.org/10.1038/s41746-023-00819-6

García-Villar, C. (2021). A critical review on altmetrics: Can we measure the social impact factor? Insights into Imaging, 12(1), 92. https://doi.org/10.1186/s13244-021-01033-2

Gaspar, M., Salway, T., y Grace, D. (2022). Ambivalence and the biopolitics of HIV pre-exposure prophylaxis (PrEP) implementation. Social Theory & Health, 20(2), 171-187. https://doi.org/10.1057/s41285-020-00154-w

Gauchat, G. W. (2023). The Legitimacy of Science. Annual Review of Sociology, 49(1), 263-279. https://doi.org/10.1146/annurev-soc-030320-035037

Gorraiz, J. (2025). Acknowledging the new invisible colleague: Addressing the recognition of Open AI contributions in in scientific publishing. Journal of Informetrics, 19(2), 101642. https://doi.org/10.1016/j.joi.2025.101642

Gu, N., y Hahnloser, R. H. R. (2023). SciLit: A Platform for Joint Scientific Literature Discovery, Summarization and Citation Generation. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), 235-246. https://doi.org/10.18653/v1/2023.acl-demo.22

Guy, J. (2024). Neither individualism nor anti‐individualism: The coevolution of social systems and psychic systems. Journal for the Theory of Social Behaviour, 54(1), 52-64. https://doi.org/10.1111/jtsb.12395

He, J., Houde, S., y Weisz, J. D. (2025). Which Contributions Deserve Credit? Perceptions of Attribution in Human-AI Co-Creation (No. arXiv:2502.18357). arXiv. https://doi.org/10.48550/arXiv.2502.18357

Hwee Min, A. (2025, julio 10). NUS researchers tried to influence AI-generated peer reviews by hiding prompt in paper. CNA. https://www.channelnewsasia.com/singapore/nus-researchers-hidden-ai-prompt-arxiv-5231211

Johansson, M. A., y Saderi, D. (2020). Open peer-review platform for COVID-19 preprints. Nature, 579(7797), 29-29. https://doi.org/10.1038/d41586-020-00613-4

Keenan, B., y Sokol, K. (2024). Mind the Gap! Bridging Explainable Artificial Intelligence and Human Understanding with Luhmann’s Functional Theory of Communication (No. arXiv:2302.03460). arXiv. https://doi.org/10.48550/arXiv.2302.03460

Klotins, E., Gorschek, T., Sundelin, K., y Falk, E. (2022). Towards cost-benefit evaluation for continuous software engineering activities. Empirical Software Engineering, 27(6), 157. https://doi.org/10.1007/s10664-022-10191-w

Koskinen, K. U., y Breite, R. (2020). Social Autopoietic Systems. En K. U. Koskinen y R. Breite (Eds.), Uninterrupted Knowledge Creation (pp. 63-84). Springer International Publishing. https://doi.org/10.1007/978-3-030-57303-4_7

Labraña, J., Ocampo, S. P., Dockendorff, D. T.-, y Cathalifaud, M. A.-. (2020). La diferenciación funcional de la sociedad y sus condiciones estructurales para enfrentar la pandemia por COVID-19. Revista MAD, 43, 60-70. https://doi.org/10.5354/0719-0527.2020.60652

Laher, S. (2025, junio 26). Can academics use AI to write journal papers? What the guidelines say. The Conversation. http://theconversation.com/can-academics-use-ai-to-write-journal-papers-what-the-guidelines-say-258824

Lin, J. (2016, septiembre 7). Linking Publications to Data and Software. Crossref Blog. https://doi.org/10.64000/hnzd5-aew22

Luhmann, N. (1996). La ciencia de la sociedad (J. Torres Nafarrate, Ed.; S. Pappe, B. Erker, & F. Segura, Trads.). Universidad Iberoamericana ; Anthropos.

Luhmann, N. (2007). La sociedad de la sociedad (J. Torres Nafarrate, Trad.; 1. Aufl). Universidad Iberoamericana.

Luli, C. (2020). What Society? Invisible Machines, Control, and Niklas Luhmann’s Theory of Society. Symplokē, 28(1-2), 133. https://doi.org/10.5250/symploke.28.1-2.0133

Lund, B. D., y Naheem, K. t. (2024). Can ChatGPT be an author? A study of artificial intelligence authorship policies in top academic journals. Learned Publishing, 37(1), 13-21. https://doi.org/10.1002/leap.1582

Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., y Wang, Z. (2023). ChatGPT and a new academic reality: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association for Information Science and Technology, 74(5), 570-581. https://doi.org/10.1002/asi.24750

Mendonça, A., Tanigushi, C., y Packer, Abel, A. L. (2022, mayo 11). SciELO Preprints server completes two years of operation, contributing to the advancement of Open Science | SciELO in Perspective [Académica]. SciELO En Perspectiva. https://blog.scielo.org/en/2022/05/11/scielo-preprints-server-completes-two-years-of-operation-contributing-to-the-advancement-of-open-science/

Merton, R. K. (1974). The sociology of science: Theoretical and empirical investigations (4. Dr.). Univ. of Chicago Pr.

Mills, D., y Inouye, K. (2020). Problematizing ‘predatory publishing’: A systematic review of factors shaping publishing motives, decisions, and experiences. Learned Publishing, 23 August. https://doi.org/10.1002/leap.1325

Mühlhoff, R. (2025). The Ethics of AI: Power, Critique, Responsibility (1th ed.). Bristol University Press. https://doi.org/10.51952/9781529249262

Naddaf, M. (2025, marzo 26). AI is transforming peer review—And many scientists are worried. Nature News Feature. https://www.nature.com/articles/d41586-025-00894-7

Nassi-Calò, L. (2023, marzo 22). Cómo la revisión por pares de preprints puede ser parte de los programas de doctorado y posdoctorado | SciELO en Perspectiva. SciELO En Perspectiva. https://blog.scielo.org/es/2023/03/22/como-la-revision-por-pares-de-preprints-puede-ser-parte-de-los-programas-de-doctorado-y-posdoctorado/

Oransky, I. (2023, septiembre 27). Making retraction data freely accessible – Why Crossref’s acquisition of the Retraction Watch database is a big step forward [Académica]. LSE Impact Blog. https://blogs.lse.ac.uk/impactofsocialsciences/2023/09/27/making-retraction-data-freely-accessible-why-crossrefs-acquisition-of-the-retraction-watch-database-is-a-big-step-forward/

Overwijk, J. (2019). Autopoietic System. Philosophy Today, 63(4), 1125-1137. https://doi.org/10.5840/philtoday2020128315

Overwijk, J. (2021). Paradoxes of Rationalisation: Openness and Control in Critical Theory and Luhmann’s Systems Theory. Theory, Culture & Society, 38(1), 127-148. https://doi.org/10.1177/0263276420925548

Peters, U., y Chin-Yee, B. (2025). Generalization bias in large language model summarization of scientific research. Royal Society Open Science, 12(4), 241776. https://doi.org/10.1098/rsos.241776

Pirozelli, P. (2021). The structure of scientific controversies: Thomas Kuhn’s social epistemology. Filosofia Unisinos, 1-17. https://doi.org/10.4013/fsu.2021.223.06

Reif, A. (2024). Preconditions of trust in science in the context of digital media: A theoretical framework for structured research. Open Science Framework. https://doi.org/10.31219/osf.io/uesm4

Rempel, M. (1996). Systems Theory and Power/Knowledge: A Foucauldian Reconstruction of Niklas Luhmann’s Systems Theory. International Journal of Sociology and Social Policy, 16(4), 58-90. https://doi.org/10.1108/eb013250

Rittman, M. (2025, enero 29). Retraction Watch retractions now in the Crossref API. Blog Crossref. https://doi.org/10.13003/692016

Ross-Hellauer, T. (2017). What is open peer review? A systematic review. F1000Research, 6, 588. https://doi.org/10.12688/f1000research.11369.2

Shaffer, J. D. (2021). Knowledge, boundaries, and bodies: Social construction between medical sociology and science and technology studies. Sociology Compass, 15(10), e12924. https://doi.org/10.1111/soc4.12924

Shamseer, L., Moher, D., Maduekwe, O., Turner, L., Barbour, V., Burch, R., Clark, J., Galipeau, J., Roberts, J., y Shea, B. J. (2017). Potential predatory and legitimate biomedical journals: Can you tell the difference? A cross-sectional comparison. BMC Medicine, 15(1), 28. https://doi.org/10.1186/s12916-017-0785-9

Simões, G., Radosavljevic, M., y Johnston, J. B. (2022). The impact of Artificial Intelligence in society through the lens of Luhmann’s Social Systems Theory – A Systematic Review. Bristish Academy of Management Conference 2022, Manchester, UK. http://sure.sunderland.ac.uk/id/eprint/18382/

Smail, B., Aliane, H., y Abdeldjalil, O. (2023). Using an explicit query and a topic model for scientific article recommendation. Education and Information Technologies, 28(12), 15657-15670. https://doi.org/10.1007/s10639-023-11817-2

Taubert, N. (2018). Open infrastructure and community: The case of astronomy. Journal of Science Communication, 17(02), C02. https://doi.org/10.22323/2.17020302

Van Eck, N. J., y Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053-1070. https://doi.org/10.1007/s11192-017-2300-7

Vanderstraeten, R. (2021). Niklas Luhmann and Talcott Parsons. En A. J. Treviño y H. Staubmann, The Routledge International Handbook of Talcott Parsons Studies (1.a ed., pp. 271-280). Routledge. https://doi.org/10.4324/9780429321139-25

Wang, Y., Ma, X., Nie, P., Zeng, H., Lyu, Z., Zhang, Y., Schneider, B., Lu, Y., Yue, X., y Chen, W. (2025). ScholarCopilot: Training Large Language Models for Academic Writing with Accurate Citations (No. arXiv:2504.00824). arXiv. https://doi.org/10.48550/arXiv.2504.00824

Xie, B., Shen, Z., y Wang, K. (2021). Is preprint the future of science? A thirty year journey of online preprint services (No. arXiv:2102.09066). arXiv. https://doi.org/10.48550/arXiv.2102.09066

Zapp, M. (2021). The authority of science and the legitimacy of international organisations: OECD, UNESCO and World Bank in global education governance. Compare: A Journal of Comparative and International Education, 51(7), 1022-1041. https://doi.org/10.1080/03057925.2019.1702503